
Technical Appendix of

“Non-Separable Preferences do not Rule Out Aggregate

Instability under Balanced-Budget Rules : A Note”

1 Derivation of the Intertemporal Equilibrium

In order to derive the intertemporal equilibrium, let

τ(t) ≡ τ̃(K(t), l(t)) = G
w(K(t)/l(t))l(t)

and substitute τ̃(K, l) and the wage rate (11) in the first order conditions (6) and

(7). Given K and λ, the system obtained can be solved to express the consumption

demand and labor supply functions c(K(t), λ(t)) and l(K(t), λ(t)). Substituting the

latter in the expression of the tax rate, we obtain:

τ̃(K(t), l(K(t), λ(t))) ≡ τ(K(t), λ(t)) (A.1)

Using (10)-(11), we get the equilibrium values for the rental rate of capital r(t) and

the wage rate w(t) with a(t) = K(t)/l(K(t), λ(t)):

r(t) = Af ′(a(t)) ≡ r(K(t), λ(t))

w(t) = A[f(a(t))− a(t)f ′(a(t))] ≡ w(K(t), λ(t))
(A.2)

Substituting the expressions obtained for prices, tax rate, consumption demand and

labor supply in the equation of capital accumulation (5) and in the Euler equation

(8), we obtain the following system of differential equations in K and λ:

K̇(t) = r(K(t), λ(t))K(t) + (1− τ(K(t), λ(t)))w(K(t), λ(t))l(K(t), λ(t))

− δK(t)− c(K(t), λ(t))

λ̇(t) = −λ(t) [r(K(t), λ(t))− ρ− δ]

(A.3)

2 Proof of Proposition 1

To establish the existence of a normalized steady state (a∗, l∗, c∗, τ∗) = (1, 1, c∗, τ∗),

we have to prove the existence and uniqueness of solutions A∗ and B∗ satisfying:

δ + ρ = A∗f ′(1)

τ∗ = G
A∗[f(1)−f ′(1)]

c∗ = (1− τ∗)A∗[f(1)− f ′(1)] +A∗f ′(1)− δ
UL(c,(l̄−1)/B∗)
B∗Uc(c,(l̄−1)/B∗)

= (1− τ∗)A∗[f(1)− f ′(1)]

(A.4)
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From the first equation of (A.4), we derive that A∗ = ρ+δ
f ′(1) which gives, once

substituted in the second and the third equations of (A.4), a unique τ∗ and c∗ such

that:
τ∗ = s(1)G

(ρ+δ)(1−s(1))

c∗ = s(1)ρ+(1−τ)(ρ+δ)(1−s(1))
s(1)

Considering A∗, τ∗ and c∗, we get the following from the last equation of (A.4):

g̃(B) ≡ UL(c,(l̄−1)/B)

BUc(c,(l̄−1)/B)
= (1−τ∗)(ρ+δ)(1−s(1))

s(1) (A.5)

Since under Assumption 1, limB→0 g̃(B) = 0 and limB→+∞ g̃(B) = +∞, or

limB→0 g̃(B) = +∞ and limB→+∞ g̃(B) = 0, and Bg̃′(B)/g̃(B) 6= 0, there exists

a unique B∗ solution of (A.5).

3 Proof of Lemma 1

Let us linearize (A.3) around the NSS. First, using the definitions (15) and the first

order conditions (6) and (7), we get εcl = (1−τ)wl
c εlc. Using the expression of w at

the NSS given in (A.2) together with (12) and (A.4) we find wl = K(1−s)(δ+ρ)/s.

Since at NSS, c = l[ρa+ (1− τ)w], it follows:

εcl = (1−τ)(δ+ρ)(1−s)+sρ
(1−τ)(δ+ρ)(1−s) εlc (A.6)

Second, differentiating τ(K(t), λ(t)) as given by (A.1), we obtain the elasticities of

the tax rate with respect to K and λ:

ετk = dτ
dK

K
τ = − (1−τ)s

σ
[σ∆εcc+σ−s]

(1−τ)σ∆εcc+τ(s−σ)

ετλ = dτ
dλ

λ
τ = − (1−τ)(σ−s)εcc

(1−τ)σ∆εcc+τ(s−σ)

(
1
εcc
− 1

εlc

)
Third, using (15), the Implicit Function Theorem gives the partial derivatives of the

functions c(K(t), λ(t)) and l(K(t), λ(t)) evaluated at the NSS:

dc
dK = c

K∆εcl

(
s
σ −

τετk
1−τ

)
, dc

dλ = − c
λ∆

[
1
εll
− (1− τετλ

1−τ ) 1
εcl

+ s
σ

]
dl
dK = l

K∆εcc

(
s
σ −

τετk
1−τ

)
, dl

dλ = l
λ∆

[
(1− τετλ

1−τ ) 1
εcc
− 1

εlc

]
with ∆ = 1

εcc

(
1
εll

+ s
σ

)
− 1

εclεlc
. From these results and (A.2) we also derive at the

NSS:

dr
dK = − r(1−s)

Kσ

[
1− 1

∆εcc

(
s
σ −

τετk
1−τ

)]
, dr

dλ = r(1−s)
λ∆σ

[
(1− τετλ

1−τ ) 1
εcc
− 1

εlc

]
dw
dK = ws

Kσ

[
1− 1

∆εcc

(
s
σ −

τετk
1−τ

)]
, dw

dλ = − ws
λ∆σ

[
(1− τετλ

1−τ ) 1
εcc
− 1

εlc

]
Finally, linearizing the system (A.3) around the NSS, using (A.6) and the above

results, gives:
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dK̇
dK = ρ− (δ+ρ)(1−s)

s

{
τ
[
ετk + s

σ

[
1− 1

∆εcc
( sσ −

τετk
1−τ )

]]
− 1−τ

∆εcc
( sσ −

τετk
1−τ )

}
− (1−τ)(1−s)(δ+ρ)

s∆εcl
( sσ −

τετk
1−τ )

dK̇
dλ = (1−τ)(1−s)(δ+ρ)K

s∆λ

[
1
εll

+ s
σ −

(
1− τετλ

1−τ
)

1
εcl

]
+ (1− τ)

[(
1− τετλ

1−τ
)

1
εcc
− 1

εlc

]
+ (δ+ρ)(1−s)K

sλ

{
τ
[
∆ετλ − s

σ

[
(1− τετλ

1−τ ) 1
εcc
− 1

εlc

]]}
dλ̇
dK = −λ(δ+ρ)(1−s)

Kσ

[
∆ + 1

∆εcc

(
s
σ −

τετk
1−τ

)]
dλ̇
dλ = − (δ+ρ)(1−s)

∆σ

[
(1− τετλ

1−τ ) 1
εcc
− 1

εlc

]
After tedious computations and straightforward simplifications, using (A.6), the

expressions of ετk, ετλ as given above, we get the following characteristic polynomial:

P(λ) = λ2 − T λ+D = 0 (A.7)

with
T = dK̇

dK + dλ̇
dλ = ρ− (ρ+δ)(1−s)τ

στ−s−(1−τ)σεcc[
1
εcc

1
εll
− 1
εcl

1
εlc

]

and

D = dK̇
dK

dλ̇
dλ −

dK̇
dλ

dλ̇
dK

=
(ρ+δ)(1−s)εcc

[
[(1−τ)(ρ+δ)(1−s)+sρ]

[
(1−τ)

(
1
εcc
− 1
εlc

+ 1
εll
− 1
εcl

)
−τ

]
+τ(1−τ)(ρ+δ)(1−s)

(
1
εcc
− 1
εlc

)]
sσ
[
στ−s−(1−τ)σεcc[

1
εcc

1
εll
− 1
εcl

1
εlc

]
]

Local indeterminacy requires T < 0 and D > 0. A necessary condition for T < 0 is

τ > τ with:

τ =
s
σ

+εcc
(

1
εcc

1
εll
− 1
εcl

1
εlc

)
1+εcc

(
1
εcc

1
εll
− 1
εcl

1
εlc

)
In the linearly homogeneous case, the elasticities are given by:

εlc = −εcc (1−α)
α , εcl = −εcc (1−α)

α
(1−τ)(δ+ρ)(1−s)+sρ

(1−τ)(1−s)(ρ+δ) ,

εll = εcc
(1−α)2[(1−τ)(ρ+δ)(1−s)+sρ)

α2(1−τ)(ρ+δ)(1−s)

(A.8)

and 1
εccεll

− 1
εlcεcl

= 0, while we derive with the JR formulation:

1
εcc

= θ
c−γ (l/B)1+χ

1+χ
cγ

c− (l/B)1+χ

1+χ
cγ
− γ(1− γ)

(l/B)1+χ

1+χ
cγ

c−γ (l/B)1+χ

1+χ
cγ
, 1

εll
= θ

(l/B)1+χ

1+χ
cγ

c− (l/B)1+χ

1+χ
cγ

+ χ,

1
εcl

=
(l/B)1+χ

1+χ
cγ

c−γ (l/B)1+χ

1+χ
cγ

[
θ
c−γ (l/B)1+χ

1+χ
cγ

c− (l/B)1+χ

1+χ
cγ
− γ

]
, 1

εlc
= θ

c−γ (l/B)1+χ

1+χ
cγ

c− (l/B)1+χ

1+χ
cγ
− γ,

(A.9)

Using these expressions and the relationship between εcl and εlc at NSS given by

equation (A.6), we derive:

(l/B)1+χ

1+χ
cγ−1

1−γ (l/B)1+χ

1+χ
cγ−1

= (1−τ)(δ+ρ)(1−s)
(1−τ)(δ+ρ)(1−s)+sρ ≡ C(τ)
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Re-arranging this equation gives:

(l/B)1+χ

1+χ cγ−1 = C(τ)(1+χ)
1+χ+γC(τ)

Then, the following expressions hold:

c−γ (l/B)1+χ

1+χ
cγ

c− (l/B)1+χ

1+χ
cγ

= 1+χ
1+χ−(1−γ)C(τ) ,

(l/B)1+χ

1+χ
cγ

c−γ (l/B)1+χ

1+χ
cγ

= (1+χ)C(τ)
1+χ−(1−γ)C(τ)

The elasticities rewrite therefore:
1
εcc

= θ 1+χ
1+χ−(1−γ)C(τ) − γ(1− γ)C(τ)

1+χ ,
1
εll

= θ (1+χ)C(τ)
1+χ−(1−γ)C(τ) + χ,

1
εlc

= θ 1+χ
1+χ−(1−γ)C(τ) − γ,

1
εcl

= C(τ)(τ)
εlc

,
(A.10)
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